Chapter 4. Pipeline and Tools

Data analysis is time-consuming because of many, many steps. To build a pipeline for it, R has a good module, tidyr.

In Julia, there's a package named Tidier.jl, doing the same thing.

import Pkg;
Pkg.add(["Tidier", "TidierStrings"]);
using Tidier, RDatasets, TidierStrings
   Resolving package versions...
  No Changes to `~/.julia/environments/v1.11/Project.toml`
  No Changes to `~/.julia/environments/v1.11/Manifest.toml`

Load Data

Load a samle dataset, iris:

df = dataset("datasets", "iris")
first(df, 5)

5×5 DataFrame

Row
SepalLength
SepalWidth
PetalLength
PetalWidth
Species

Float64

Float64

Float64

Float64

Cat…

1

5.1

3.5

1.4

0.2

setosa

2

4.9

3.0

1.4

0.2

setosa

3

4.7

3.2

1.3

0.2

setosa

4

4.6

3.1

1.5

0.2

setosa

5

5.0

3.6

1.4

0.2

setosa

Data Pipeline

In the following pipeline, we wanna:

  1. Create a new column dubbed SepalLengthMax, and fill the column with the maximum number of SepalLength;

  2. Filter a subset of the rows in the dataframe whose SepalWidth is no less than 3.0

  3. Select columns of SepalLength, SepalLengthMax, PetalLength

  4. Only keep the first five rows for testing

5×3 DataFrame

Row
SepalLength
SepalLengthMax
PetalLength

Float64

Float64

Float64

1

5.1

7.9

1.4

2

4.9

7.9

1.4

3

4.7

7.9

1.3

4

4.6

7.9

1.5

5

5.0

7.9

1.4

Which is equivalent to the following codes in R:

A full list of the Julia implementation of tidyr in R can be found here.

String Manipulation

In communication studies and many social sciences relevant to textual representations, we often handle large volumes of string data and may need to perform operations like detection and replacement on these strings.

We can use TidierStrings.jl:

3×5 DataFrame

Row
SepalLength
SepalWidth
PetalLength
PetalWidth
Species

Float64

Float64

Float64

Float64

Cat…

1

5.1

3.5

1.4

0.2

setosa

2

4.9

3.0

1.4

0.2

setosa

3

4.7

3.2

1.3

0.2

setosa

(1) Detection

For example, we can filter rows with column names starting with r'set.*'

5×5 DataFrame

Row
SepalLength
SepalWidth
PetalLength
PetalWidth
Species

Float64

Float64

Float64

Float64

String

1

5.1

3.5

1.4

0.2

setosa

2

4.9

3.0

1.4

0.2

setosa

3

4.7

3.2

1.3

0.2

setosa

4

4.6

3.1

1.5

0.2

setosa

5

5.0

3.6

1.4

0.2

setosa

(2) Replacing

5×5 DataFrame

Row
SepalLength
SepalWidth
PetalLength
PetalWidth
Species

Float64

Float64

Float64

Float64

String

1

5.1

3.5

1.4

0.2

setAAAosa

2

4.9

3.0

1.4

0.2

setAAAosa

3

4.7

3.2

1.3

0.2

setAAAosa

4

4.6

3.1

1.5

0.2

setAAAosa

5

5.0

3.6

1.4

0.2

setAAAosa

(3) Equivalence test

5×6 DataFrame

Row
SepalLength
SepalWidth
PetalLength
PetalWidth
Species
IsSetosa

Float64

Float64

Float64

Float64

String

Bool

1

5.1

3.5

1.4

0.2

setosa

true

2

4.9

3.0

1.4

0.2

setosa

true

3

4.7

3.2

1.3

0.2

setosa

true

4

4.6

3.1

1.5

0.2

setosa

true

5

5.0

3.6

1.4

0.2

setosa

true

These three operations are frequently used in research but if you wanna more, please refer to the documentation.

(4) Using symbolic vector in your pipeline

In many cases, we need to use symbolic vectors to enhance the flexibility and expressiveness of our data processing pipelines. For example, we may have defined a symbloic vector x and we want to use it in the pipeline. In this case, we can use the @mutate macro to create a new column based on the symbolic vector x. The following example shows how to do this:

4a. Incorrect version

4b. Correct version

3×4 DataFrame

Row
SepalLength
SepalWidth
PetalLength
PetalWidth

Float64

Float64

Float64

Float64

1

5.1

3.5

1.4

0.2

2

4.9

3.0

1.4

0.2

3

4.7

3.2

1.3

0.2

Network

How to retrieve APIs if we wanna download something? Similar to requests in Python, we can use HTTP and JSON3 module in Julia.

For example, if we want to have a look at the structure of GitHub APIs:

Then, how can we run regression and many models? Here's the guide.

Last updated

Was this helpful?