Chapter 4. Pipeline and Tools
Data analysis is time-consuming because of many, many steps. To build a pipeline for it, R has a good module, tidyr
.
In Julia, there's a package named Tidier.jl, doing the same thing.
import Pkg;
Pkg.add(["Tidier", "TidierStrings"]);
using Tidier, RDatasets, TidierStrings
[32m[1m Resolving[22m[39m package versions...
[32m[1m No Changes[22m[39m to `~/.julia/environments/v1.11/Project.toml`
[32m[1m No Changes[22m[39m to `~/.julia/environments/v1.11/Manifest.toml`
Load Data
Load a samle dataset, iris
:
df = dataset("datasets", "iris")
first(df, 5)
5×5 DataFrame
Float64
Float64
Float64
Float64
Cat…
1
5.1
3.5
1.4
0.2
setosa
2
4.9
3.0
1.4
0.2
setosa
3
4.7
3.2
1.3
0.2
setosa
4
4.6
3.1
1.5
0.2
setosa
5
5.0
3.6
1.4
0.2
setosa
Data Pipeline
In the following pipeline, we wanna:
Create a new column dubbed
SepalLengthMax
, and fill the column with the maximum number ofSepalLength
;Filter a subset of the rows in the dataframe whose
SepalWidth
is no less than 3.0Select columns of SepalLength, SepalLengthMax, PetalLength
Only keep the first five rows for testing

@chain df begin
@mutate(SepalLengthMax = maximum(SepalLength))
@filter(SepalWidth >= 3.0)
@select(SepalLength, SepalLengthMax, PetalLength)
@slice(1:5)
end
5×3 DataFrame
Float64
Float64
Float64
1
5.1
7.9
1.4
2
4.9
7.9
1.4
3
4.7
7.9
1.3
4
4.6
7.9
1.5
5
5.0
7.9
1.4
Which is equivalent to the following codes in R:
```R
library(dplyr)
library(tidyr)
df <- df %>%
mutate(SepalLengthMax = max(SepalLength)) %>% # Create a new column with max value
filter(SepalWidth >= 3.0) %>% # Filter rows
select(SepalLength, SepalLengthMax, PetalLength) %>% # Select specific columns
slice(1:5) # Take the first 5 rows
```
A full list of the Julia implementation of tidyr
in R can be found here.
String Manipulation
In communication studies and many social sciences relevant to textual representations, we often handle large volumes of string data and may need to perform operations like detection and replacement on these strings.
We can use TidierStrings.jl
:
first(df, 3)
3×5 DataFrame
Float64
Float64
Float64
Float64
Cat…
1
5.1
3.5
1.4
0.2
setosa
2
4.9
3.0
1.4
0.2
setosa
3
4.7
3.2
1.3
0.2
setosa
(1) Detection
For example, we can filter rows with column names starting with r'set.*'
@chain df begin
@mutate(Species = String(Species)) # convert categoreis into strings
@filter(str_detect(Species, r"set.*")) # starting with set, using regex
@slice(1:5) # head
end
5×5 DataFrame
Float64
Float64
Float64
Float64
String
1
5.1
3.5
1.4
0.2
setosa
2
4.9
3.0
1.4
0.2
setosa
3
4.7
3.2
1.3
0.2
setosa
4
4.6
3.1
1.5
0.2
setosa
5
5.0
3.6
1.4
0.2
setosa
(2) Replacing
@chain df begin
@mutate(Species = String(Species))
@mutate(Species = str_replace(Species, "set", "setAAA"))
@slice(1:5) # head
end
5×5 DataFrame
Float64
Float64
Float64
Float64
String
1
5.1
3.5
1.4
0.2
setAAAosa
2
4.9
3.0
1.4
0.2
setAAAosa
3
4.7
3.2
1.3
0.2
setAAAosa
4
4.6
3.1
1.5
0.2
setAAAosa
5
5.0
3.6
1.4
0.2
setAAAosa
(3) Equivalence test
@chain df begin
@mutate(Species = String(Species))
@mutate(IsSetosa = str_equal(Species, "setosa"))
@slice(1:5) # head
end
5×6 DataFrame
Float64
Float64
Float64
Float64
String
Bool
1
5.1
3.5
1.4
0.2
setosa
true
2
4.9
3.0
1.4
0.2
setosa
true
3
4.7
3.2
1.3
0.2
setosa
true
4
4.6
3.1
1.5
0.2
setosa
true
5
5.0
3.6
1.4
0.2
setosa
true
These three operations are frequently used in research but if you wanna more, please refer to the documentation.
(4) Using symbolic vector in your pipeline
In many cases, we need to use symbolic vectors to enhance the flexibility and expressiveness of our data processing pipelines. For example, we may have defined a symbloic vector x
and we want to use it in the pipeline. In this case, we can use the @mutate
macro to create a new column based on the symbolic vector x
. The following example shows how to do this:
4a. Incorrect version
using Tidier, RDatasets, TidierStrings
df = dataset("datasets", "iris")
symbolic_vector = [:SepalLength, :SepalWidth, :PetalLength, :PetalWidth]
4-element Vector{Symbol}:
:SepalLength
:SepalWidth
:PetalLength
:PetalWidth
```Julia
# Incorrect version
@chain df begin
@select(symbolic_vector) # this will not work because the symbolic_vector will not be evaluated
@head(3)
end
```
4b. Correct version
# Incorrect version
@chain df begin
@select(!!symbolic_vector) # !! is used to tell Julia: hey bro this is a name of a variable
@head(3)
end
3×4 DataFrame
Float64
Float64
Float64
Float64
1
5.1
3.5
1.4
0.2
2
4.9
3.0
1.4
0.2
3
4.7
3.2
1.3
0.2
Network
How to retrieve APIs if we wanna download something? Similar to requests
in Python, we can use HTTP
and JSON3
module in Julia.
import Pkg;
Pkg.add("JSON3");
using HTTP
using JSON3
[32m[1m Resolving[22m[39m package versions...
[32m[1m No Changes[22m[39m to `~/.julia/environments/v1.11/Project.toml`
[32m[1m No Changes[22m[39m to `~/.julia/environments/v1.11/Manifest.toml`
For example, if we want to have a look at the structure of GitHub APIs:
url = "https://api.github.com"
req = HTTP.get(url)
req = JSON3.read(req.body)
req
JSON3.Object{Vector{UInt8}, Vector{UInt64}} with 33 entries:
:current_user_url => "https://api.github.com/user"
:current_user_authorizations_html_url => "https://github.com/settings/connect…
:authorizations_url => "https://api.github.com/authorizatio…
:code_search_url => "https://api.github.com/search/code?…
:commit_search_url => "https://api.github.com/search/commi…
:emails_url => "https://api.github.com/user/emails"
:emojis_url => "https://api.github.com/emojis"
:events_url => "https://api.github.com/events"
:feeds_url => "https://api.github.com/feeds"
:followers_url => "https://api.github.com/user/followe…
:following_url => "https://api.github.com/user/followi…
:gists_url => "https://api.github.com/gists{/gist_…
:hub_url => "https://api.github.com/hub"
:issue_search_url => "https://api.github.com/search/issue…
:issues_url => "https://api.github.com/issues"
:keys_url => "https://api.github.com/user/keys"
:label_search_url => "https://api.github.com/search/label…
:notifications_url => "https://api.github.com/notification…
:organization_url => "https://api.github.com/orgs/{org}"
:organization_repositories_url => "https://api.github.com/orgs/{org}/r…
:organization_teams_url => "https://api.github.com/orgs/{org}/t…
:public_gists_url => "https://api.github.com/gists/public"
:rate_limit_url => "https://api.github.com/rate_limit"
:repository_url => "https://api.github.com/repos/{owner…
:repository_search_url => "https://api.github.com/search/repos…
⋮ => ⋮
Then, how can we run regression and many models? Here's the guide.
Last updated
Was this helpful?